Hugoniot, yielding the expression

$$B = \frac{P_H a_H}{2} - \frac{A}{k} e^{ka_H} - \frac{C^2}{(V_0 - Ma_H)} \sum_{i=0}^{\infty} a_i a_H^i$$
(64)

where A is given by Eq. (44). The energy E_i can now be determined by setting a = 0 and $E_i = E_S$ in Eq. (62) yielding

$$E_{i} = (A/k) + B.$$
 (65)

Substituting this value into Eq. (60) produces a value for T_i required in Eq. (59).

The bulk sound speed C_b of the compressed material behind the shock front can be calculated from the expression

$$C_{b} = -V_{A}(\partial P/\partial V)_{S} = (V_{0}-\alpha)_{A}(\partial P/\partial \alpha)_{S}$$
(66)

where the term $(\partial P/\partial a)_S$ is expressed by Eq. (38). Therefore, the sound speed C_H on the Hugoniot becomes upon substitution of $P_S = P_H$ and $a = a_H$

$$C_{\rm H}^{2} = (V_{0} - a_{\rm H})^{2} \left[k P_{\rm H} + \frac{C^{2} (V_{0} + M a_{\rm H} - k V_{0} a_{\rm H})}{(V_{0} - M a_{\rm H})^{3}} \right] .$$
 (67)

In deriving the equations from which isentropes, isotherms, and sound speed are calculated, it is assumed that Γ/V is a constant in the Mie-Gruneisen form for the equation of state. Also, the final expressions obtained for these equations used the experimental fact that U_s and U_p can be described by a linear relation. The determination of the temperature on the Hugoniot has the added assumption that the specific heat C_V is constant for all T which is probably a rather poor assumption. The experimental data for specific heat are usually tabulated as a function of temperature over some temperature range. This C_p data may be converted to C_V by means of Nernst-